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1 Introduction 1

1 Introduction

Traditionally, magnetic resonance imaging (MRI) generates image contrasts representing
proton densities or relaxation behaviors of a sample. Some characteristics of biological
tissues, however, can not be detected with traditional MRI. Tissues consist of protons
free in their movement (Brownian motion) and of ones that are restricted in their motion,
i.e. associated with macromolecules. Since the transverse relaxation time T2 of bound
protons is typically less than 100 µs (T2 of free protons ≈ 100 ms), standard methods are
insensitive to their concentration. In contrast, magnetization transfer (MT) imaging is
sensitive to the restricted proton fraction and it was suggested to be used for the diagnosis
of multiple sclerosis (MS). MS is a central nervous system disease leading to a loss of
myelin and thus to a loss of protons bound to myelin. The evolution of demyelination,
i.e. a lesion, in the brain can be observed by MT imaging whereas it can be invisible in
standard MRI.

The magnetization transfer phenomenon is often reduced to a single value, the so-called
magnetization transfer ratio (MTR). This value, however, reflects relaxation and exchange
properties as well as imaging details and experimental conditions. Only recently it was
shown that balanced steady state free precession (bSSFP) is sensitive to MT effects. In
this work the possibility for quantitative MT imaging with bSSFP is investigated.

For quantification of magnetization transfer, a two pool model is used. Image parame-
ter variations in series of 3D images of the brain of healthy volunteers lead to parameter
estimates for the model, i.e. the fraction of bound protons F , the exchange rates kf and
kr between the two proton pools associated with magnetization transfer and relaxation
times. Signal equations for the two pool model based on bSSFP are derived and used to fit
the experimental data. Numerical simulations validate that the approximation describes
the model with sufficient accuracy. Finally, the stability of quantitative MT imaging based
on bSSFP is examined, providing a basis for further examinations of pathological changes.
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Part I

Introduction to theory

2 Basics of magnetic resonance imaging

2.1 Nuclei in a magnetic field

If a nucleus has the angular momentum ~I, its magnetic moment amounts to

~µ = γ~I and |~µ| = γ~
√

I(I + 1) , (2.1)

where I is the nuclear spin quantum number and γ the gyromagnetic ratio (2.6752 ·
108 s−1T−1 for hydrogen nuclei), yielding the magnetization

~M =
N∑

n=1

~µn (2.2)

for an ensemble of N spins. In an external static magnetic field of strength B0 the potential
energy of a magnetic dipole is E = −~µ · ~B0 and the torque is ~N = ~µ× ~B0. As the magnetic
field tries to align the magnetic moment parallel to ~B0, protons behave similarly to a
mechanical gyroscope and precess around the magnetic field direction with the so-called
Larmor frequency

ωL = γB0. (2.3)

The magnetic moment of a nucleus with I = 1/2 has two possible alignments in an external
magnetic field pointing in z-direction (Fig. 1). Removing the energy degeneracy leads to
the nuclear Zeeman levels, which make the effect of nuclear magnetic resonance possible
(Fig. 2). The magnetic moment in z-direction is related to the spin quantum number ms

Figure 1: A spin 1/2 particle in an external magnetic field has two
possible alignments [1].

by µz = γ~ms. Spins parallel to the magnetic field direction have spin one half, ms = 1/2,
and an energy of

E↑ = −1
2
γ~B0. (2.4)

Spins with ms = −1/2 stand antiparallel to the field direction and have an energy of

E↓ =
1
2
γ~B0. (2.5)
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Nuclear magnetic resonance (NMR) denotes the transition between the two eigenstates of
the protons. In other words, NMR consists in flipping the magnetic moments aligned in
~B0 by irradiation of an adequate second magnetic field [1].

Figure 2: Nuclear Zeeman levels of a spin 1/2 particle in an external
magnetic field of strength B0 along the z-direction [23].

2.2 Spin statistics

The Boltzmann distribution describes the occupation of the energy levels by

n↑
n↓

= e
∆E↓↑
kBT , (2.6)

where n↑ is the number of spins oriented parallel to an external field and n↓ the number of
spins oriented antiparallel to the field. Here, ∆E↓↑ is the energy difference E↓−E↑ = γ~B0,
kB is the Boltzmann constant and T the temperature of the spin system. Transitions are
induced by irradiating a second magnetic field of adequate frequency, according to Einstein.
In thermal equilibrium there are slightly more particles in the lower energy state. In total,
we therefore observe an absorption of the irradiated energy proportional to the difference
in the occupation numbers, A ∝ ∆n = n↑ − n↓ (Fig. 3).

Figure 3: Formation of the magnetic resonance signal due to a difference
in the occupation numbers given by the Boltzmann distribution [1].
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The polarization P is given by

P =
∆n

n
=

n↑ − n↓
n↑ + n↓

=
1− n↓

n↑

1 + n↓
n↑

=
1− e−

∆E
kT

1 + e−
∆E
kT

. (2.7)

For an MR scanner with B0 = 1.5 T, we have ∆E ≈ 10−27 J. At room temperature
kT ≈ 10−23 J/K · 102 K = 10−21 J and the absorption becomes

A ∝ ∆n ≈ n
1− (1− ∆E

kT )
1 + (1− ∆E

kT )
≈ n

∆E

2kT
= n

~γB0

2kT
. (2.8)

The polarization lies in the range of 10−6. First, the absorption A is proportional to the
number of particles n. This means that quantitative measurements concerning the proton
concentration are possible. Furthermore, it is favorable to do analysis at high magnetic
fields and at low temperatures. In the medical application, magnetic field and temperature
are not arbitrary and therefore the very weak signal is processed by sensitive amplifiers
for the imaging [1].

In the case of resonance, both energy levels are equally occupied after a very short time,
and no absorption would be observed, if the Boltzman distribution was not permanently
rebuilt. This happens by means of relaxation.

2.3 Equation of motion for the magnetization

The time change of the magnetic moment (Eq. (2.1)) in an external magnetic field ~B0 can
be described by

d~µ

dt
= γ

d~I

dt
= γ ~N = γ~µ× ~B0 , (2.9)

where ~N denotes the torque on a magnetic moment in an external magnetic field (see
Fig. 4). After summation, we obtain

d ~M

dt
= γ ~M × ~B0, (2.10)

which is the equation of motion for protons that do not interact with their environment
[2].

2.4 The magnetic resonance signal

As the longitudinal magnetization is negligible in comparison to the main magnetic field
B0, irradiation with a radio frequency magnetic field, a so-called RF pulse, is necessary
to rotate the longitudinal magnetization and to produce a magnetic resonance signal (MR
signal). We introduce a reference frame K ′, rotating around the z-axis at an angular
velocity ~ωL (Fig. 5). In addition to the external magnetic field ~B0, a nuclear momentum
~µ in K ′ experiences the magnetic field −~ω/γ due to relative motion between K ′ and a
non-rotating reference frame. Hence, the effective field is

~Beff = ~B0 − ~ω

γ
+ ~B1. (2.11)

The nuclear moment precesses with the frequency γBeff in this field. The resonance
condition reads ω = ω0 = γB0, what implies ~Beff = ~B1, corresponding to the angular
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Figure 4: Precession of a magnetic moment ~µ in an external magnetic
field ~B0 along the z-direction [23].

Figure 5: Movement of the magnetization vector ~M in a static reference
frame K (left) and a rotating reference frame K ′ (right) [23].



6 2 Basics of magnetic resonance imaging

velocity ω1. In the rotating reference frame the magnetization is thus only exposed to
~B1 whereas ~B0 has no influence. An on-resonance pulse is an RF pulse of exactly the
Larmor frequency of the precessing magnetic moment, i.e. 63.9 MHz for hydrogen nuclei
in a magnetic field of 1.5 T.

2.5 Excitation

By means of an RF pulse, the magnetization is flipped away from the z-axes by an arbitrary
angle, e.g. into the xy-plane (90◦ pulse) or into the negative z-direction (180◦ pulse). This
process can be characterized by the flip angle (in rad)

α =
∫ Trf

0
γB1(t)dt. (2.12)

Here, Trf is the pulse duration and B1(t) the envelope of the RF pulse. If the RF pulse
duration is clearly shorter than the relaxation times, Trf ¿ T1, T2, rotation and relaxation
can be considered separately. In the following, irradiation of a magnetic field ~B1, which
is stationary in K ′, is effected along the x-axis. The impact of an RF pulse of flip angle
α = ω1t can be described by the matrix

Rx(α) =




1 0 0
0 cosα sinα
0 − sinα cosα


 . (2.13)

Thus, the magnetization change during the short pulse duration can be written as ~M(Trf ) =
Rx(α) ~M0. Matrix notation was first used by Jaynes in order to solve the Bloch equations
[3].

2.6 Relaxation

After switching off the RF excitation, the magnetization vector ~M returns to the equilib-
rium state ~M0. This process is known as relaxation and the motion of the magnetization
vector follows the Bloch equation

d ~M

dt
= γ ~M × ~B0 −




Mx
T2
My

T2
Mz−M0

T1


 . (2.14)

The first term describes the classical gyroscope motion whereas the second term contains
longitudinal and transverse relaxation, defined by the relaxation times T1 and T2 [2].

We start out of a spin system in thermal equilibrium. After an instantaneous excitation
by an RF pulse, corresponding to the flip angle α, the transverse magnetization is of form
MT (0) = M0 sinα. Thereafter, MT (t) decays exponentially. Transverse relaxation T2

is also called spin-spin relaxation since it describes the loss of phase coherence between
excited spins due to fluctuations in the local magnetic field. For biological tissues T2

usually lies in the range of 30-150 ms at 1.5 T.
The longitudinal magnetization after an excitation amounts to Mz(0) = M0 cosα.

Through saturation (90◦ pulse) we obtain Mz(0) = 0 and through inversion (180◦ pulse)
Mz(0) = −M0. Afterwards the longitudinal magnetization heads exponentially back to its
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equilibrium value M0. The longitudinal relaxation T1 is also termed spin-lattice relaxation
as energy is exchanged between the spin system and the surrounding thermal reservoir,
the lattice. This process is controlled by transitions between Zeeman energy levels. For
biological tissues T1 lies in the range of 300-2000 ms at 1.5 T.

The three spacial components of the Bloch equation read

dMx

dt
= ω0My − Mx

T2
, (2.15a)

dMy

dt
= −ω0Mx − My

T2
, (2.15b)

dMz

dt
=

M0 −Mz

T1
. (2.15c)

Substituting Mx = mxe−t/T2 and My = mye
−t/T2 leads to

dmx

dt
= ω0my , (2.16a)

dmy

dt
= −ω0mx . (2.16b)

This system of coupled first order differential equations can be reduced to two decoupled
second order differential equations

d2mx

dt2
= −ω2

0mx , (2.17a)

d2my

dt2
= −ω2

0my (2.17b)

with solution

Mx(t) = [Mx(0) cos(ω0t) + My(0) sin(ω0t)]e−t/T2 , (2.18a)

My(t) = [My(0) cos(ω0t)−Mx(0) sin(ω0t)]e−t/T2 . (2.18b)

The longitudinal magnetization satisfies

Mz(t) = Mz(0)e−t/T1 + M0(1− e−t/T1). (2.19)

In a rotating frame of reference K ′ the first term in Eq. (2.14) vanishes, yielding

d

dt




Mx

My

Mz


 = −




Mx
T2
My

T2
Mz−M0

T1


 . (2.20)

The solutions read

Mx(t) = Mx(0)e−t/T2 , (2.21a)

My(t) = My(0)e−t/T2 , (2.21b)

Mz(t) = Mz(0)e−t/T1 + M0

(
1− e−t/T1

)
, (2.21c)
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and the relaxation can be expressed by the matrix

E(t) =




E2 0 0
0 E2 0
0 0 E1


 , (2.22)

where E1 = e−t/T1 and E2 = e−t/T2 . If the magnetization vector ~M0 is subjected only to
relaxation,

~M(t) = E(t) ~M(0) + M0(1− E1)ẑ, (2.23)

where ẑ denotes a unity vector in z-direction.

2.7 MR imaging

Generation of an MR image requires encoding of the signal with position. The principle
of encoding consists in adding magnetic field gradients to B0, which leads to a position
dependent frequency ω(~r) of the magnetization. A Fourier transformation of the acquired
frequency data yields the position dependent spin density ρ(~r).

First, consider a constant gradient ~G applied during the time τ [4]. The frequency ω
at position ~r in the rotating frame of reference is

ω(~r) = γ ~G · ~r. (2.24)

The MR signal from an element of volume dV of spins at position ~r can be written as

dS( ~G, t) = ρ(~r)dV eiγ ~G·~rt, (2.25)

where ρ(~r) is the local spin density. The signal thus oscillates at γ ~G · ~r and may be
integrated:

S(t) =
∫

V
ρ(~r)eiγ ~G·~rtd~r, (2.26)

where d~r stands for volume integration. The concept of ~k-space was introduced by Ljung-
gren [5]. The ~k-vector is defined as

~k =
1
2π

γ ~Gt. (2.27)

Using the ~k-space formalism, the signal becomes the Fourier transform of the spin density,

S(~k) =
∫

V
ρ(~r)ei2π~k·~rd~r, (2.28)

and the spin density is the inverse Fourier transform of the signal,

ρ(~r) =
∫

V
S(~k)e−i2π~k·~rd~k. (2.29)

In practice, the MR signal S(~k) is measured at successive time intervals. The Fourier
transform of this ~k-space sampling yields the spin density ρ(~r), which is in the frequency
domain and can be considered as a three-dimensional spectrum of the signal S(~k).
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Furthermore, the volume in space can be limited by slice selection. A slice selection
gradient ~Gs is applied during the RF pulse irradiation. Since the Larmor frequency of the
nuclear spins is proportional to the magnetic field strength, it becomes position dependent:

ωL(~r) = γB0 = γ ~Gs · ~r + ω0, (2.30)

where ω0 denotes the Larmor frequency without applied gradients. The slice thickness
depends on the frequency bandwidth of the RF pulse. Very short pulses are relatively
broad in frequency space and consequently, many resonances at different positions are
excited. Sinc-shaped pulses (sinc (x) = sin(x)/x) are preferred as their Fourier transform
is rectangular and therefore the slice is clearly limited. Pulses with an infinite duration
are not applicable in experiments and thus sinc-pulses with one to three side lobes are
used in the case of small flip angles (Fig. 6) [6]. The frequency interval ∆ω corresponds

Figure 6: A sinc-pulse with infinitely many side lobes (a) and one with
only one side lobe (b) as a function of time and their Fourier transforms
in the frequency domain for small flip angles [23].

to the band width BW of the RF pulse and thus, the slice thickness is associated with

∆z =
BW

γGz
. (2.31)

A frequency encoding gradient is applied along one spatial direction whereas a phase
encoding gradient is applied along the other direction. Thereafter, the position of the
~k-space line is well defined and read out by a readout gradient. The ~k-space is sampled
one line after the other.
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3 Pulse sequences

3.1 Basic terms and echo formation

In practice, an image is accomplished by using a sequence of repeated RF pulses and
magnetic field gradients. Depending on the sequence, RF pulses have different flip angles α,
durations Trf and repetition times TR. Basically, there are two types of echo formation,
i.e. of signal readout.

3.1.1 Spin echo

For the spin echo, a 90◦ pulse is used to create the transverse magnetization. Thereafter,
MT decreases due to loss of phase coherence whereas Mz increases. At half the echo time
TE/2 a 180◦ pulse is irradiated in order to refocus the proton precession by inverting the
spin revolution. At TE the spin echo is read out (Fig. 7). The fast signal loss without

Figure 7: Spin echo with RF pulse (RF), readout gradient (R), slice
selection gradient (S) and phase encoding gradient (P) [22].

refocusing, i.e. without compensating for the influence of constant inhomogeneities of the
external magnetic field on the protons is described by T ∗2 . The rephasing 180◦ pulses
make the signal drop slowly with T2 instead of T ∗2 . The spin echo is comparably easy
to realize and insensitive to susceptibility artifacts. However, due to long imaging times,
other sequences are preferably used today.

3.1.2 Gradient echo

The gradient echo is created by application of magnetic field gradients instead of refocus-
ing pulses. As a consequence of the omitted 180◦ pulses the inhomogeneities of the static
magnetic field are not canceled and the signal strength is characterized by T ∗2 instead of
T2. For a homogenous magnetic field both times T2 and T ∗2 are equal. The gradient echo
is characterized by a readout gradient moment which is not refocusing. After acquisition
of the gradient echo, a spoiler gradient can be inserted to dephase the transverse magneti-
zation. An example of a sequence with gradient echo is the FLASH (fast low-angle shot)
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sequence (Fig. 8). This sequence uses gradient dephasing and RF spoiling, i.e. a quadratic
change of the RF pulse phase.

Figure 8: FLASH sequence with RF pulse (RF), readout gradient (R),
slice selection gradient (S) and phase encoding gradient (P) [22].

3.2 Steady state free precession

For closely spaced successive RF pulses the MR signal never disappears entirely, what
involves that the spins cannot return to the equilibrium state. In this steady state free
precession (SSFP) a non-vanishing transient equilibrium state for the transverse and the
longitudinal magnetization components builds up.

The signal strength depends on the repetition time TR, the type of tissue (T1, T2, ρ)
and the flip angle. A steady state is reached if the flip angle α, the repetition time TR
between pulses and the dephasing φ of spins during TR are constant. In addition, the
phases of the RF pulses can vary quadratically as a function of the pulse number n as a
further possibility to modify image contrast [7].

3.3 Balanced steady state free precession

Balanced steady state free precession (bSSFP) provides the highest signal of all steady state
sequences. This is achieved by gradient moments adding up to zero after each sequence
interval (Fig. 9). Furthermore, the bSSFP sequence is flow compensated. This means that
spins with constant velocity are not subdued to any dephasing during a repetition interval.
The bSSFP signal is sensitive to off-resonance effects, i.e. field inhomogeneities (Fig. 10).
Hence, it is favorable to use short TR and apply a shim in order to homogenize the main
magnetic field.

The signal of SSFP pulse sequences can be calculated according to the Bloch equation,
Eq. (2.14). Characteristic parameters are the flip angle α, by which the magnetization is
rotated due to the RF pulse, the phase angle θ of the RF pulse, which corresponds to the
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Figure 9: Balanced steady state free precession (bSSFP) sequence with
RF pulse (RF), readout gradient (R), slice selection gradient (S) and phase
encoding gradient (P) [22].

Figure 10: Left: bSSFP image with (left) and without (right) stop bands
due to off-resonance effects (explanation see section 3.3.1).
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direction of the irradiated field B1, the dephasing angle φ, which defines the rotation of the
magnetization about the z-axis, and the relaxation, which is described by E1 = e−TR/T1

and E2 = e−TR/T2 , respectively. Here, θ = 0 means that B1 is directed along the x-axis.

3.3.1 Numerical simulation of the bSSFP signal

The steady state MR signal can be easily simulated using rotation matrices (Eqs. (2.13)
and (2.22)). First, the magnetization is rotated by a flip angle α about the x-axis, followed
by relaxation during TE = TR/2 and rotation about the z-axis by half the phase angle
φ/2 due to off-resonance frequency precession. Next, the MR signal is read out. Another
rotation about the z-axis by half the phase angle and relaxation during TE = TR/2 follow
to finish TR. After several repetition cycles the magnetization vector converges into a
steady state.

The absolute value of the transverse magnetization

|MT | =
∣∣∣
√

M2
x + M2

y

∣∣∣ (3.1)

at echo time TE = TR/2 can be depicted as a function of the off-resonance dephasing
angle φ (Fig. 11). The signal curve shows 2π-periodic broad maxima, the pass bands,
and narrow minima, the stop bands. The bSSFP signal depends on the flip angle as well

Figure 11: Transversal magnetization as a function of the off-resonance
dephasing angle φ for α = 50◦, T1 = 200 ms, T2 = 100 ms and TR = 5 ms.

(Fig. 12). For small flip angles the maximum signal is located at φ = 0◦ and φ = 360◦,
respectively, for higher flip angles at φ = 180◦. If α exceeds an optimal flip angle αopt,
the maximum gets lower. For spins with a dephasing angle of 180◦ the magnetization in
equilibrium as a function of the flip angle α is depicted in Fig. 13.
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Figure 12: Transversal magnetization as a function of the dephasing
angle φ for different flip angles, T1 = 200 ms, T2 = 100 ms and TR = 5 ms.

Figure 13: Transversal magnetization as a function of the flip angle α
for φ = 180◦, T1 = 200 ms, T2 = 100 ms and TR = 5 ms.
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3.3.2 Signal equation of bSSFP

The evolution of the magnetization vector can be expressed by the matrices from Eqs. (2.13)
and (2.22). Since partial integration was used, there is no relaxation during excitation.
The magnetization directly after the n-th RF pulse is given by ~M+

n = Rx
~M−

n whereas
~M−

n expresses the magnetization directly before the n-th pulse. After the pulse and the
subsequent relaxation, we get the signal directly before the (n + 1)-th pulse

~M−
n+1 = E(TR) ~M+

n + M0(1− E1)ẑ. (3.2)

For a steady state ~M−
n+1 = ~M−

n and thus

~M−
n = ~M−

n+1 = E(TR)Rx
~M−

n + M0(1− E1)ẑ. (3.3)

The steady state magnetization directly before the pulse becomes

~M−(∞) = [I − E(TR)Rx]−1M0(1− E1)ẑ (3.4)

and the steady state magnetization directly after the pulse

~M+(∞) = Rx[I −E(TR)Rx]−1M0(1− E1)ẑ, (3.5)

where I denotes the unity matrix. For an RF pulse along the x-axis, Mx(∞) = 0 and only
My(∞) contributes to the transverse MR signal. Solving Eq. (3.5) yields

M+
y (∞) =

M0 sinα(1−E1)
1 + E1E2 − (E1 + E2) cos α

. (3.6)

For off-resonance precession the matrix

Rz(φ) =




cosφ sinφ 0
− sinφ cosφ 0

0 0 1


 (3.7)

is used and describes a rotation about the z-axis by the phase angle φ = ω0t. For the
bSSFP sequence often φ = 180◦ is used and Rz reduces to a matrix which reflects the
transverse magnetization among the z-axis:

Rz =



−1 0 0
0 −1 0
0 0 1


 . (3.8)

The eigenvalue equation takes the form

~M+(∞) = Rx[I −RzE(TR)Rx]−1M0(1− E1)ẑ (3.9)

with the solution

M+
y (∞) =

M0 sinα(1−E1)
1− E1E2 − (E1 −E2) cos α

. (3.10)

The bSSFP signal for on-resonance and for a centered echo (TE = TR/2) between
alternating excitations (φ = 180◦) is calculated according to Eq. (3.10), including the
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factor e−TR/(2T2) =
√

E2, which takes into account that the signal is read out at the echo
time TE = TR/2:

S(α, T1, T2, TR) =
M0 sinα(1− E1)

√
E2

1− E1E2 − (E1 −E2) cosα
, (3.11)

with E1 = e−TR/T1 and E2 = e−TR/T2 .
The signal behavior is more descriptive in the limit TR ¿ T1, T2. Both E1 and E2 can

be approximated with 1− TR/T1 and 1− TR/T2, respectively, and the steady state signal
transforms to

M+
y (∞) =

M0 sinα

1 + T1
T2
−

(
T1
T2
− 1

)
cosα

. (3.12)

The optimal signal as a function of the flip angle for φ = 180◦ occurs at

cosαopt ≈
T1
T2
− 1

T1
T2

+ 1
, (3.13)

leading to the signal

M+
y (∞) |α=αopt=

1
2

M0

√
T2

T1
. (3.14)

Eq. (3.14) shows that tissues with high T2/T1 ratios have a high bSSFP signal [8].

3.3.3 Generalized signal equation of SSFP

In general, we have to consider the dephasing angle φ resulting from off-resonance effects.
For a gradient echo sequence, the complex steady state transverse magnetization MT =
Mx + iMy directly after an RF pulse is

M+
T (∞) = M0 sinα

(1−E1)(1−E2e
−iφ)

C cosφ + D
, (3.15)

according to [9]. Thus,

M+
x (∞) = M0 sinα

(1−E1)(1−E2 cosφ)
C cosφ + D

, (3.16)

and
M+

y (∞) = M0 sinα
(1−E1)E2 sinφ

C cosφ + D
, (3.17)

where

C = E2(E1 − 1)(1 + cosα), (3.18a)

D = 1−E1 cosα− (E1 − cosα)E2
2 . (3.18b)

Next, the transverse magnetization is integrated over one voxel. Only the component Mx

contributes to the integral since My is antisymmetric due to the sinφ term of the imaginary
part.

〈MT 〉 = M0
sinα

2π
(1− E1)

∫ π

−π

1−E2 cosφ

C cosφ + D
dφ = M0

(1− E1) sin α

C

(
C + DE2√
D2 − C2

−E2

)

(3.19)
describes the SSFP signal.
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4 Magnetization transfer

4.1 TR dependency of the bSSFP signal

According to Eq. (3.11), balanced SSFP is almost independent of TR (between TR = 3 ms
and TR = 20 ms, the signal varies by less than 1h). This is confirmed in simple, i.e.
aqueous, phantoms. However, it can be shown that the signal from tissues is clearly
weaker than predicted by theory, i.e. from Eq. (3.11). For TR = 3.5 ms a contrast ratio
from cerebrospinal fluid (CSF) to gray or white matter of about 6 is measured. From
Eq. (3.11), however, follows a contrast ratio of about 3. On the other hand, measurements
at a very long TR of 20 ms, yield a ratio of 4, being comparable to the factor 3 from theory.
Thus, a considerable signal increase for long TR can be observed (Fig. 14). The origin of
the signal reduction for short TR is found to be in the magnetization transfer (MT) [10].

Figure 14: 2D bSSFP images with TR = 3.5 ms (left) and TR = 20 ms
(right). A considerable signal decrease for short TR can be observed [10].

4.2 Origin of magnetization transfer

MT imaging was introduced by Wolff and Balaban in 1989 [11]. Magnetization transfer
is based on the fact that nuclei in different chemical environments interact magnetically.
In most biological tissues there are freely moving protons as well as protons bound to
macromolecules or immobile protons. The bound proton (semisolid) part has a much
shorter transverse relaxation time T2 than the free proton (liquid) counterpart and it is not
possible to apply spatial encoding gradients before the bound proton signal has completely
decayed. The process of irradiating an RF pulse such that there is no net longitudinal
magnetization is known as full saturation. Saturation of one proton pool influences the
other pool. If the semisolid pool is saturated, the longitudinal magnetization of this
compartment is decreased. Thus, magnetization transfer from the liquid to the semisolid
pool occurs and the liquid pool becomes saturated. This results in a reduced signal from
tissues exhibiting high MT. Thereby the visibility of tissues with low MT is increased (e.g.
lesions and cerebral infarctions) [12]. The relaxation exchange is based on dipolar coupling
or direct chemical exchange.
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The signal reduction for saturation of the restricted pool is described by

MTR =
S0 − Ssat

S0
, (4.1)

where S0 is the signal without MT and Ssat the signal including MT. According to
Eq. (4.1), a strong signal attenuation yields a high MTR. Measured MTR values de-
pend on the applied flip angle (Fig. 15) For multiple sclerosis patients white brain matter
has reduced MTR values because of a fractional demyelination and thus a loss of bound
protons.

Figure 15: Measured MTR dependency on the flip angle. Maximal MTR
values are achieved at α ≈ 60◦ and α ≈ 50◦ for white and gray mat-
ter, respectively. Within the gray shaded area the MTR is approximately
constant.

4.3 Two pool model

Magnetization transfer simulations often base on a simple two pool model (Fig. 16), that
was introduced by Henkelman et al. [13]. One pool consists of free protons (subscript f)
and the other pool of protons restricted in their motion (subscript r). In each pool there is
longitudinal magnetization (white), which is labeled by Mz,f and Mz,r, respectively, and
a saturated fraction (gray). The total pool sizes amount to M0,f and M0,r, respectively.
The rates R1,f and R1,r correspond to the recovery of the longitudinal magnetization as
given by the T1 values. Irradiating an RF pulse reduces the longitudinal magnetization
by the rate RRF,f and RRF,r, respectively. Furthermore, an exchange between the two
compartments takes place, which is given by the rates kf = RM0,f and kr = RM0,r.

A formal description of the two pool model bases on a coupled system of differential
equations [10]. Typically, off-resonance irradiation with frequency offset ∆ is used. Due
to the off-resonance irradiation, the restricted pool is saturated whereas the free pool is
not strongly affected (Fig. 17). The effect of a pulsed irradiation on the longitudinal
magnetization of the bound protons Mz,r, according to Graham and Henkelman [15], can
be described by

W (∆, t) = πω2
1(t)G(∆). (4.2)
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Figure 16: Two pool model including exchange between the free and the
bound proton pool [13].

Figure 17: The bound protons have a much broader absorption lineshape
than the free protons and can therefore be saturated using an off-resonance
RF pulse [14].
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W (∆, t) is the time dependent saturation rate, which is proportional to the instantaneous
RF pulse power ω1(t) = γ| ~B1(t)| characterizing the excitation field strength, and to the
absorption line shape G of the bound proton pool at a frequency offset ∆. It is found that
Super-Lorentzian line shapes are appropriate for the description of tissue [16]:

G(2π∆) = T2,r

∫ 1

0

1
| 3u2 − 1 | exp

[
−2

(
2π∆T2,r

3u2 − 1

)2
]
du. (4.3)

The mean saturation rate 〈W 〉 thus depends on the flip angle α, the absorption line shape
G, the pulse duration Trf and the pulse shape ω1(t), and is given by

〈W (∆)〉 = πγ2 1
Trf

∫ Trf

0
ω2

1(t)dtG(∆). (4.4)

In this work, applied RF pulses are of form

ω1(t) = A sinc
[
β

(
t− Trf

2

)]
e−c(t−Trf /2)2 , (4.5)

where A, β, and c are parameters that change depending on the pulse duration. If Trf is
stretched by the factor f , A and β are reduced by f and c by f2 (Fig. 18).

Figure 18: Shape of an RF pulse with flip angle α = 30◦ and Trf =
320 µs. The amplitude is halved for Trf = 640 µs.

For the MT simulation with bSSFP, on-resonance irradiation is applied, i.e. ∆ → 0,
and G is about 1.5 · 10−5 s−1. The system of differential equations (see [17]) can thus be
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reduced to

dMx,f

dt
= −Mx,f

T2,f
, (4.6a)

dMy,f

dt
= −My,f

T2,f
+ ω1(t)Mz,f , (4.6b)

dMz,f

dt
= R1,f (1−Mz,f )− kfMz,f + krMz,r − ω1(t)My,f , (4.6c)

dMx,r

dt
= −Mx,r

T2,r
, (4.6d)

dMy,r

dt
= −My,r

T2,r
+ ω1(t)Mz,r, (4.6e)

dMz,r

dt
= R1,r(M0,r −Mz,r) + kfMz,f − krMz,r −W (∆ → 0, t)Mz,r. (4.6f)

Here, R1,f and R1,r refer to the longitudinal relaxation rates, T2,f and T2,r to the trans-
verse relaxation times and kf and kr to the exchange rates between the two pools. The
equilibrium magnetization of the free pool M0,f was set equal to one. The fractional size of
the restricted pool amounts to F = M0,r/M0,f and by definition kr = kf/F . Considering
that T2,f is very short, Eqs. (4.6d) and (4.6e) result in Mx,r ≈ 0 and My,r ≈ 0, which
leaves a system of four coupled differential equations.
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Part II

New methods

5 Two simple models

5.1 Special case with full saturation

In the case of two pools and flip angles α À 0 full saturation of the restricted pool may
occur, i.e. Mz,r = 0. Thus, the signal loss of the free pool due to magnetization transfer
becomes maximal. Considering short RF pulses with Trf ¿ T1, T2, the rotational parts of
Eqs. (4.6a), (4.6b), (4.6c) and (4.6f) take the form:

dMx,f

dt
= 0, hence Mx,f (t) = Mx,f (0); (5.1a)

dMy,f

dt
= ω1Mz,f , hence My,f (t) = My,f (0) cosω1t + Mz(0) sinω1t;

(5.1b)
dMz,f

dt
= −ω1My,f , hence Mz,f (t) = Mz,f (0) cosω1t−My(0) sinω1t; (5.1c)

dMz,r

dt
= −W (∆ → 0, t)Mz,r, hence Mz,f (t) = Mz,r(0)e−W (∆→0,t)t. (5.1d)

The equations and solutions for the relaxation are found to be:

dMx,f

dt
= −Mx,f

T2,f
, hence Mx,f (t) = Mx,f (0)e−t/T2,f ; (5.2a)

dMy,f

dt
= −My,f

T2,f
, hence My,f (t) = My,f (0)e−t/T2,f ; (5.2b)

dMz,f

dt
= R1,f (M0,f −Mz,f )− kfMz,f ; (5.3a)

dMz,r

dt
= R1,r(M0,r −Mz,r) + kfMz,f . (5.3b)

By scaling, the z-component equation for relaxation of the free pool can be reduced to the
equation already solved for the free pool alone (Eq. (2.15c)):

dMz,f

dt
= R1,f (M0,f −Mz,f )− kfMz,f = R1,fM0,f − (R1,f + kf )Mz,f

= (R1,f + kf )
[

R1

R1 + kf
M0,f −Mz,f

]
= R̂1,f (M̂0,f −Mz,f ),

with R̂1,f = R1,f + kf and M̂0,f = R1,f/(R1,f + kf )M0,f . The differential equation has a
solution of the same form as Eq. (2.19), if R1,f is replaced by R̂1,f and M0,f by M̂0,f .

Mz,f (t) = Mz,f (0)e−(R1,f+kf )t +
R1,f

R1,f+kf

M0,f

(
1− e−(R1,f+kf )t

)
. (5.4)

Thus, the signal equation, Eq. (3.11), can also be used in this case with the above-
mentioned substitutions.
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We make the approximation that the restricted pool can be considered isolated. The
MTR can be calculated using the two extremal cases of no saturation and full saturation.
For the one pool fraction we set E1 = e−R1TE and M0 = 1 and get the signal S0(α). For
the free pool in case of full saturation of the restricted pool we use Ê1 = e−(R1+kf )TE and
M̂0 = R1/(R1 + kf ) and get the signal Ssat(α). Hence the MTR follows from Eq. (4.1).

For white matter R1 = 1.71 s−1, T2,f = 81 ms and kf = 4.45 s−1, for gray matter
R1 = 0.97 s−1, T2,f = 93 ms and kf = 2.30 s−1 were measured and simulated, respectively
[18]. Furthermore, we used TR = 3 ms. Calculating the MTR from this strongly simplified
model yields a too high signal for α → 0 because the denominator S0(α) becomes small
(Fig. 20, left).

5.2 Longitudinal and saturated fraction

As the derived MTR values (Fig. 20, left) do not correspond to the measured values
(Fig. 15), especially for small flip angles, a less simplified approach is now used. We
assume that the restricted pool fraction can be divided into two pools, one of them fully
saturated (Fig. 19). In order to calculate the steady state longitudinal magnetization and

Figure 19: A simple MT model.

the saturation of the restricted pool we consider a spoiled gradient recalled (SPGR) echo
method with short TR [8]. The longitudinal steady state magnetization is given by the
Ernst equation

Mze =
M0(1− E1)
1− E1 cosα

. (5.5)

From Eq. (5.1d)
Mz,r = M0,re

−Wt, (5.6)

and, on the other hand, from SPGR

Mz,r = M0,r cosα. (5.7)

Thus, identifying e−Wt ≡ cosα, we finally find

sat = 1− 1−E1,r

1−E1,r cosα
= 1− 1− E1,r

1−E1,re−WTrf
. (5.8)
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Thus, the formula for the steady state magnetization described in the former section can
be corrected by means of the saturation. Reducing the size of the fully saturated pool by
a factor according to Eq. (5.8) yields an MTR curve showing a shape similar to measured
data. We can observe a correction of the high MTR values for small flip angles. The
maximal MTR is located at flip angles around 20◦ (Fig. 20). The maximal measured MTR-
values, however, are achieved at flip angles around 50◦ (Fig. 15) and are considerably lower.
Thus, the MTR values drop at high and low flip angles corresponding to measurements,
while the maximum is not located at the expected flip angle. Furthermore, the simulated
maxima have considerably higher values (MTR between 0.6 and 0.7) than the measured
ones (MTR between 0.3 and 0.4).

Figure 20: Signal behavior for the free pool (blue curve), for a fully
saturated restricted pool (green curve) and MTR (red curve), for white
and gray matter (solid and dashed lines, respectively). Left: calculated
with one pool model, right: corrected by the saturation rate. TR = 3 ms,
Trf = 640 µs, R1,f = 1.71 s−1, T2,f = 81 ms for white matter, R1,f =
0.97 s−1, T2,f = 93 ms for gray matter, R1,r = 1 s−1, F = 0.157 and
kf = 4.45 s−1.
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6 Signal equation for the two pool model

6.1 Exchange matrix

Since the simple models did not lead to an appropriate description of tissue signals, we
try to solve the two pool model equations. We therefore make an approximation which
allows us to use a matrix formalism analogous to the one used in section 3.3.2. The
approximation consists in separating relaxation and exchange between the two pools.
In general, the magnetization vector is composed of four non-zero components: ~M =
(Mx,f My,f Mz,f Mz,r).

Eqs. (4.6a)-(4.6f) can be simplified by separating relaxation and exchange.

d ~M

dt
=




1 0 0 0
0 1 0 0
0 0 −kf kr

0 0 kf −kr


 ~M = kr




1 0 0 0
0 1 0 0
0 0 F 1
0 0 F −1


 ~M (6.1)

describes the exchange between the two pools, where F = kf/kr. This eigenvalue equation
has the general solution ~M(t) = A(t) · ~M(0) with the exchange matrix

A(t) =
1

F + 1




F + 1 0 0 0
0 F + 1 0 0
0 0 1 + Fe−(F+1)krt 1− e−(F+1)krt

0 0 F (1− e−(F+1)krt) F + e−(F+1)krt


 . (6.2)

6.2 BSSFP signal with MT

To describe the bSSFP signal, i.e. the on-resonant case, with MT we consider the magne-
tization vector ~M = (My,f Mz,f Mz,r). The exchange between the pools is given by

A(t) =
1

F + 1




F + 1 0 0
0 1 + Fe−(F+1)krt 1− e−(F+1)krt

0 F (1− e−(F+1)krt) F + e−(F+1)krt


 . (6.3)

The rotation matrix corresponding to the RF pulse is of form

Rx(α) =




cosα sinα 0
− sinα cosα 0

0 0 e−W t


 (6.4)

and contains the saturation of the bound pool. For alternating RF pulses, the rotation of
the transverse magnetization about the z-axis is given by

Rz(φ = 180◦) =



−1 0 0
0 1 0
0 0 1


 (6.5)

and the relaxation by

E =




E2 0 0
0 E1,f 0
0 0 E1,r


 , (6.6)
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where E2 = e−TR/T2,f , E1,f = e−R1,f TR and E1,r = e−R1,rTR.
The magnetization directly after the n-th RF pulse is ~M+

n = Rx
~M−

n and the signal di-
rectly before the (n+1)-th pulse, assuming that relaxation and exchange can be separated,
is

~M−
n+1 = A

(
E ~M+

n + ~M0

)
. (6.7)

For a steady state ~M−
n+1 = ~M−

n and thus

~M−
n = ~M−

n+1 = A
(
ERx

~M−
n + ~M0

)
. (6.8)

The eigenvalue equation takes the form

~M+(∞) = Rx[I −RzAERx]−1A ~M0 (6.9)

in case the relaxation takes place before the exchange, where

~M0 =




0
M0,f (1− E1,f )
M0,r(1− E1,r)


 . (6.10)

In case the exchange takes place before the relaxation the signal directly before the (n+1)-
th pulse is given by

~M−
n+1 = EA ~M+

n + ~M0 (6.11)

and in the steady state
~M−

n = ~M−
n+1 = EARx

~M−
n + ~M0. (6.12)

Thus, the eigenvalue equation is of form

~M+(∞) = Rx[I −RzEARx]−1 ~M0. (6.13)

As a reminder, the y-component of the bSSFP magnetization in the case without MT from
Eq. (3.10) is

M+
y (∞) = M0 sinα

1−E1

1−E1E2 − (E1 − E2) cos α
. (6.14)

Eq. (6.9) can as well be solved analytically and yields the steady state MR signal My

directly after the pulse.

M+
y (∞) = M0 sinα

(1− E1,f )B + F (1− E1,r)(1− fk)
A− E1,fE2B − (E1,fB − E2A) cos α

, (6.15)

where

A = 1 + F − FfwE1,r + fkfwE1,r, (6.16a)
B = 1 + Ffk − fkfwE1,r + FfkfwE1,r, (6.16b)

fk = e−(kf+kr)TR =: e−kTR, (6.16c)

fw = e−WTrf , (6.16d)

M0,f = 1, M0,r = FM0,f , E2 = e−TR/T2,f , E1,f = e−R1,f TR and E1,r = e−R1,rTR. The
signal achieved at the echo time TE reads

My(TE) =
√

E2 M+
y (∞). (6.17)
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The limit of a vanishing restricted pool, i.e. F → 0, k → 0, W → 0 and E1,r → 0, gives
us fk → 1, fw → 1, A → 1 and B → 1, which lets the solution converge towards the
well-known bSSFP solution without MT.

Fig. 21 shows the dependency of the calculated curves on the flip angle, where for-
mula (6.15) is used. The case where relaxation takes place before exchange as well as the
case where exchange takes place before relaxation are depicted. All the curves are valid
for white brain matter, using TR = 3 ms and Trf = 640 µs. This result corresponds well

Figure 21: Calculated bSSFP signal and MTR as a function of α for
white brain matter. Blue curve: signal without MT. Green curve: signal
with MT. Red curve: MTR. Relaxation before exchange (solid lines) and
exchange before relaxation (dashed lines). TR = 3 ms, Trf = 640 µs,
R1,f = 1.71 s−1, T2,f = 81 ms, R1,r = 1 s−1, F = 0.157 and kf = 4.45 s−1.

to the measured data (Fig. 15). In Fig. 22, we see the behavior of the signal and the MTR
curves as a function of TR, where formula (6.15) was used. In the case without MT, W
was set to zero. The same three curves are depicted in dependency of kf in Fig. 22. All
curves were calculated for α = 40◦. After including the magnetization transfer we thus get
the bSSFP signal dependency on TR which corresponds to the measured values (Fig. 23),
i.e. a considerable signal increase instead of a constant signal as seen in Eq. (3.11).

By extrapolating the MTR signal for TR → 0 the situation of infinitely many RF pulses
per second is achieved and therefore full saturation occurs (section 5.1). Then Mz,r equals
zero, which allows a high transfer from Mz,f to Mz,r. Thus, the signal My,f is relatively
low whereas the MTR signal is high. By this means, we get MTR = 0.57 for TR = 0.
On the other hand Fig. 22 enables us to read the rate kf for MTR = 0.57, what leads to
kf = 4.5. Theoretically, it is thus possible to determine the rate kf from the MTR value
by extrapolation. However, it turns out not to be a practical method because the lowest
possible TR lies around 2.9 ms. In the applicable TR region the characteristic turn of the
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Figure 22: BSSFP signal (blue curve: without MT, green curve: with
MT) and MTR (red curve) dependency on TR and kf . R1,f = 1.71 s−1,
T2,f = 81 ms, R1,r = 1 s−1 and F = 0.157. kf = 4.45 s−1 for the TR
dependency. TR = 1 ms and Trf = 640 µs for the kf dependency.

Figure 23: BSSFP signal dependency on TR. Theoretical curve without
MT (solid line) and with MT (dashed line) for white brain matter. R1,f =
1.71 s−1, R1,r = 1 s−1, T2,f = 40 ms, α = 50◦, F = 0.157 and kf =
4.45 s−1.
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signal curve towards saturation (for TR → 0) can not be measured. In addition to the
signal curves as a function of TR for Trf = 270 µs, the curves as a function of TR for a
varying Trf are depicted in Fig. 24.

Figure 24: BSSFP signal (blue curve: without MT, green curve: with
MT) and MTR (red curve) dependency on TR. Dashed lines: constant
Trf , solid lines: varying Trf . R1,f = 1.71 s−1, T2,f = 81 ms, R1,r = 1 s−1,
F = 0.157 and kf = 4.45 s−1.
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7 Materials and methods

7.1 Experimental basics

An MR tomograph basically consists of superconducting coils to generate the main mag-
netic field B0, a transmitting unit, a receiving unit, a computer for the handling and a
unit for signal processing and image reconstruction (Fig. 25). For examinations the patient

Figure 25: Basic components of an MR tomograph [1].

lies in a tube surrounded by the magnetic coils. The latter are usually located in a bath
of liquid helium at 4 K, in which they become superconducting. Apart from the main
magnetic coils, there are insulating layers, gradient coils and shimming coils around the
tube. The purpose of the shimming coils is to homogenize the main magnetic field before
a measurement is initiated.

An RF synthesizer generates RF pulses of a given phase and duration whereas a mo-
dulator is responsible for the requested pulse shape. Depending on the flip angle and
the sample the amplifier provides pulses of a specific voltage amplitude. Before applying
pulses, they are compared to a reference in order to prevent tissue damages. The power
irradiation for imaging humans must not exceed 4 W/kg. The receiving coils are shaped
according to the examination region. Finally, the received signal is fed via a preamplifier
to a recording computer.

7.2 Measurements and postprocessing

All our MR imaging experiments were performed using a Siemens Avanto 1.5 T scanner
(Fig. 26). The voxel size was 1.33×1.33×1.33 mm3. The 3D measurements with a matrix
of 144× 192× 192 pixels consisted of

• an MPRAGE sequence yielding a good contrast between gray and white matter and
being used for segmentation,

• two SPGR echos with α = 4◦ and α = 15◦, respectively, for the calculation of a
T1 map,
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Figure 26: MR tomograph Siemens Avanto 1.5 T.

• 8 bSSFP (TrueFISP) sequences with different repetition times and

• 8 bSSFP (TrueFISP) sequences with different flip angles.

The first 8 bSSFP measurements at a flip angle of 35◦ were performed with the following
repetition times and RF pulse durations:

TR [ms] 2.92 2.99 3.09 3.26 3.52 3.88 4.28 4.78
Trf [µs] 230 300 400 580 840 1200 1600 2100

The second 8 bSSFP sequences were measured at TR = 2.99 ms, Trf = 270 µs and
these flip angles:

Flip angle [◦] 5 10 15 20 25 30 35 40

A manual shim was carried out before these 16 measurements. The whole data acqui-
sition takes about thirty minutes. The bSSFP sequence is preferred to the SSFP sequence
since the latter is prone to flow artifacts. In order to compensate for motion artifacts,
the data sets are segmented by separating the skull from the brain and registered. The
original data are converted to NIFTI data sets, which can be edited using MATLAB.

7.3 T1 maps

Longitudinal relaxation times T1 of the free pool were derived based on the DESPOT1
method [19]. According to Eq. (2.19) the z-magnetization can be written as

Mz(t) = Mz(0)E1 + M0(1− E1). (7.1)

This can be related to the signal intensity S by

S

sinα
=

S

tanα
E1 + M0(1−E1). (7.2)
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Eq. (7.2) is of form y = mx + b. If we plot S/ sinα versus S/ tanα we get the slope
m = e−TR/T1 . Two signal measurements S1 and S2 yield the slope

m =
S2/ sinα− S1/ sinα

S2/ tanα− S1/ tanα
. (7.3)

Hence, we can calculate the longitudinal relaxation time by

T1 = − TR

ln m
. (7.4)

Using this method, only two flip angle measurements are required to obtain T1,f . The lon-
gitudinal relaxation time of the restricted pool T1,r is not determined by MT experiments.
In our parameter estimations, it is set to the same value as for the free pool, R1,r = R1,f ,
whereas other experiments were performed with R1,r = 1 s−1 cf. [18].

7.4 Parameter estimations

Knowing the bSSFP signal dependency on the repetition time and the flip angle, based
on Eq. (6.15), it is possible to estimate several parameters of the two pool model. One
alternative consists in fitting the MTR signal as a function of the flip angle. Therefore,
TR, Trf , T1, T2,f and W are held constant. The flip angle is varied and the parameters
k = kf + kr and F = kf/kr as well as the amplitude are estimated by the least squares
method. This fit is very sensitive to T2,f .

Another alternative is to fit the steady state signal as a function of the repetition time.
Here, α, T1 and T2,f are given and W is calculated for every TR, RF pulse duration and
RF pulse shape. The repetition time and simultaneously the pulse duration are varied
and the parameters k and F as well as the amplitude are estimated. This method is very
sensitive to the semisolid pool fraction F and the exchange rate k.

By means of a global fit over all flip angles and all TR, not only k, F and the amplitude,
but also T2,f can be reliably received. From k and F follow kf = kF/(F + 1) and kr =
k/(F + 1). The fitting procedure can be applied to every voxel of the MR image. Hence,
an intensity distribution for the parameters F , kf and T2,f can be depicted. This leads to
a parameter map of a transverse brain slice or a three dimensional map of the whole brain
containing the quantitative model parameters. The fitting process uses the same initial
values for white and gray brain matter, but different ones for CSF. The choice of initial
values is made on the basis of the bSSFP signal strength of the α = 40◦ image for each
voxel. If white or gray matter is selected, the two pool model formula, Eq. (6.15), is used
for the fit. In case no solution is found and in case CSF is detected, the one pool model
equation, Eq. (3.11), is applied.
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8 Results

8.1 Numerical simulation

A numerical simulation of the system of differential equations (4.6a)-(4.6f) is performed
to justify the simplification of separating relaxation and exchange. We use an explicit
Runge-Kutta (4,5) formula for the numerical simulation of the steady state signal for a
given flip angle. After the steady state is reached, the signal is read out at TE = TR/2.
This is shown for white matter, for α = 40◦, W = 0, TR = 6 ms, Trf = 2700 µs and
1000 simulation steps in Fig. 27. Figures 28 and 29 display a comparison of the numerical

Figure 27: Development of My,f , Mz,f and Mz,r for a bSSFP sequence
after irradiation of an RF pulse until the steady state is reached. α = 40◦,
W = 0, TR = 6 ms, Trf = 2700 µs, 1000 simulation steps, R1,f = 1.71 s−1,
T2,f = 81 ms, R1,r = 1 s−1, F = 0.157 and kf = 4.45 s−1.

solution (3000 simulation steps) with the analytical solution for white matter. It can be
found that the case of relaxation before exchange yields a calculated MTR signal which
is only 0.43 % higher than in the case of exchange before relaxation. For W = 0 both
cases lead to the same signal whereas for W 6= 0 the case of relaxation before exchange
leads to a lower signal. For long pulse durations we observe that the simulated MT signal
values are slightly higher than the calculated ones. In this case the calculation produces
a bigger error because we assume an instantaneous rotation caused by an infinitesimally
short pulse. If this were true, MT would immediately be built up and the signal is strongly
reduced by relaxation. In reality (simulation), however, MT is slowly built up, whereby the
relaxation does not influence the maximal transverse magnetization all the time, leading
to a higher signal at TR.

The difference between simulation and calculation (exchange before relaxation) at a
flip angle of 40◦ amounts to 1.5 % for white matter and to 2.5 % for gray matter. Thus,
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the analytical formula describes the signal behavior adequately and can be used for fits of
measured data.

Figure 28: Numerical signal simulation of the exact equations (dots)
compared to the analytical solution (solid line) without MT (left) and with
MT (right) (solid line: relaxation before exchange, dashed line: exchange
before relaxation). R1,f = 1.71 s−1, T2,f = 81 ms, R1,r = 1 s−1, F =
0.157 and kf = 4.45 s−1. TR = 6 ms, Trf = 2700 µs in the case without
MT, TR = 3.5 ms, Trf = 340 µs in the case with MT.

8.2 Parameter images

First, a magnetization prepared rapid gradient echo (MPRAGE) is acquired. Based on
this image a segmentation of the whole 3D data set is performed. The segmented image
shows a good contrast between white and gray matter (Fig. 30). Secondly, two SPGR
echos are acquired with flip angles α = 4◦ and α = 15◦ (Fig. 31). These two images are
used to calculate a T1 map based on the DESPOT1 method (Fig. 32). Furthermore, 16
bSSFP images are acquired, yielding different signal strengths depending on α and TR,
respectively (Fig. 32). The fitting procedure based on the 16 segmented images is then
applied.

Examples of one point global fits for white and gray matter, respectively, can be seen
in Fig. 33 and Fig. 34. The global fit yields parameter estimates for F , kf and T2,f .
Applying the global fit to every pixel of one brain slice results in parameter images. As
the fractional pool size is correlated with myelin, F has higher values in white matter than
in gray matter. The fitted exchange rate kf yields an image contrast similar to F as can
be seen from the slice fit in Fig. 35. The fitted T2,f images show the same contrast as
usual T2-weighted scans (Fig. 36).

To compare fitted values in different subjects, two of the regions of interest (ROI)
displayed in Fig. 37 were selected. The parameters resulting from acquisitions in two
healthy volunteers are displayed in Table 1. The white matter regions for both subjects
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Figure 29: Numerical MTR simulation of the exact equations (dots)
compared to the analytical solution (solid line: relaxation before exchange,
dashed line: exchange before relaxation). R1,f = 1.71 s−1, T2,f = 81 ms,
R1,r = 1 s−1, F = 0.157 and kf = 4.45 s−1. TR = 6 ms, Trf = 2700 µs in
the case without MT, TR = 3.5 ms, Trf = 340 µs in the case with MT.

Figure 30: Segmented MPRAGE image showing a good contrast between
white and gray matter.
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Figure 31: SPGR images with flip angles α = 4◦ and α = 15◦.

Figure 32: T1 map calculated with the DESPOT1 method (left) and
bSSFP image with TR = 2.92 ms and Trf = 230 µs.
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Figure 33: Example of a one point global fit for white brain matter
yielding the parameter estimates F = 16.6±6.2 %, kf = 6.1±3.0 s−1 and
T2,f = 43.4± 8.7 ms.

Figure 34: Example of a one point global fit for gray brain matter yield-
ing the parameter estimates F = 7.6 ± 2.0 %, kf = 2.9 ± 1.1 s−1 and
T2,f = 63.9± 7.3 ms.
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Figure 35: Example of a slice fit showing parameter estimates for F
(left) and kf (right).

Figure 36: Example of a slice fit showing parameter estimates for T2,f .
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were selected from the corpus callosum splenium whereas the gray matter regions were
selected from the caudate nucleus.

Figure 37: Selected regions for the stability analysis: corpus callosum
splenium (left) and corpus callosum genu (middle) for white matter and
caudate nucleus (right) for gray matter.

Subject 1 Subject 2
White matter Gray matter White matter Gray matter

F [%] 15.1± 1.3 6.8± 0.7 16.3± 2.6 7.1± 0.8
kf [s−1] 6.3± 0.9 2.8± 0.4 6.1± 1.2 2.6± 0.3
T1,f [ms] 756± 23 1199± 69± 76 780± 81 1134± 65
T2,f [ms] 46± 4 67± 5 47± 6 67± 6
MTR [%] 43.6± 1.2 34.8± 1.6 43.1± 1.5 33.6± 1.4

Table 1: Parameter estimates for F , kf and T2,f and measurements of
T1,f and MTR for two selected regions in two healthy volunteers. Values
for white matter were derived from corpus callosum splenium and values
for gray matter from caudate nucleus.
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9 Discussion of the results

9.1 Comparison with literature values

Sled and Pike [18] described an imaging technique that yields the parameters of a two
pool model for magnetization transfer. Spoiled gradient echo sequences in which shaped
off-resonance pulses were interleaved with small angle on-resonance excitation pulses were
used. For one in vivo experiment 60 MT-weighted images and B1, B0, T1 and T2 maps
were acquired within 35 minutes. Thereafter, each scan was analyzed using a closed form
expression for the signal to yield parameter images for the model parameters.

The average regional parameters resulting from our method based on bSSFP are com-
pared to the literature values (Tab. 2). The bound proton fraction F corresponds very well
for white matter whereas for gray matter it lies 25 % above the literature value. Our ex-
change rates k are 44 % and 32 % higher than literature values for white and gray matter,
respectively. For the relaxation time T1 discrepancies of 30 % and 16 %, for T2 discre-
pancies of 29 % and 22 % for white and gray matter, respectively, are observed. Reasons
for the discrepancies between our parameters and the literature values may be different
approaches concerning the exchange rate R1,r and the absorption line shape G(∆).

WM lit. GM lit. WM reg. GM reg. WM seg. GM seg.
F [%] 15.7 5.6 15.5 7.0 14.4 7.0
kf [s−1] 4.5 2.2 6.5 2.9 5.5 2.7
T1,f [ms] 556 1010 723 1170 774 1100
T2,f [ms] 34 55 44 67 48 83

Table 2: Parameter estimates of F , kf and T2,f and measurements of
T1,f based on bSSFP compared to literature values [18]. Values for white
matter were derived from corpus callosum splenium and values for gray
matter from caudate nucleus. Literature values (left), average estimates
in the same region of interest (middle) and average segmentation values
(right).

All data was acquired using a 1.5 T MRI system. In our study the voxel size was
1.33 × 1.33 × 1.33 mm3 whereas for the cited values the in-plane resolution was 2 mm
and the slice thickness 7 mm. In addition to higher resolution our acquisition time was
substantially shorter, allowing 3D instead of 2D data sets within about 30 minutes.

9.2 Fitting sensitivities and off-resonance effects

It turns out that the line shape G = G(∆), which determines the mean saturation rate of
the restricted pool, Eq. (4.4), strongly influences the fitted values. The frequency offset ∆
can not be varied and it is not possible to determine the exact value of G. Since the exact
value is not known, we tried to include it in the global fit. This, however, lead to a ten
times smaller G than expected. Therefore, we fixed it at G = 1.4 · 10−5 s−1. It is not clear
wether the line shape should be varied for different types of brain tissue.

Assuming the effective flip angle does not exactly correspond to the chosen one, the
fitted parameters also change. The changes in F , k, kr and T2,f are of the same magnitude
as the flip angle deviation whereas the change in kf is smaller. In the future, a quantitative
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B1 map could be acquired to examine spatial variations of the applied RF pulses and, if
necessary, correct the flip angles throughout the image.

Magnetic field inhomogeneities lead to small off-resonance dephasing angles φ. To
study the off-resonance behavior the signal was simulated with and without saturation as
a function of φ (Fig. 38). The signals and the difference of the two signals are approximately
constant in the region of on-resonance.

Figure 38: Off-resonance simulation for white matter, TR = 3.5 ms,
Trf = 340 µs and α = 40 ◦. Blue curve: signal without saturation, green
curve: signal with saturation, red curve: difference of the two signals.

9.3 Stability analysis

In order to analyze the stability of the fitted and measured parameters, five acquisitions
with the same volunteer were performed with a time-lag of one to three weeks. Parameter
estimates derived from corpus callosum genu and corpus callosum splenium for white
matter and from caudate nucleus for gray matter (Fig. 37) are shown in Tables 3 to 5.
Furthermore, a 3D segmentation of white and gray matter based on an MPRAGE image
yields the parameters in Tables 6 and 7. All the parameters seem to be stable over time,
both for a selected region and a 3D segmentation of the whole brain. Differences in the
ROI analysis may result from slightly different selected regions and volunteer positions.
The segmentation values depend strongly on the selected limits between white and gray
matter in the MPRAGE image. What stands out is that the exchange rate kf is higher
in the caudate nucleus genu than in the caudate nucleus splenium whereas the relaxation
times are lower.
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WM 1 WM 2 WM 3 WM 4 WM 5 Average
F [%] 16.7± 1.4 17.0± 1.7 17.0± 1.7 17.0± 1.4 16.8± 1.6 16.9± 0.7
kf [s−1] 8.6± 0.8 8.5± 0.7 8.7± 0.9 8.5± 0.7 8.7± 0.8 8.6± 0.4
T1,f [ms] 654± 25 675± 30 657± 25 650± 25 642± 27 656± 12
T2,f [ms] 38± 2 37± 2 36± 2 37± 3 38± 2 37± 1
MTR [%] 44.3± 0.7 44.8± 1.3 44.6± 1.2 43.8± 1.4 44.7± 1.1 44.4± 0.5

Table 3: Parameter fits of F , kf and T2,f and measurements of T1,f and
MTR for white matter, corpus callosum genu.

WM 1 WM 2 WM 3 WM 4 WM 5 Average
F [%] 15.4± 1.4 15.3± 1.5 15.7± 1.6 15.6± 1.3 15.4± 1.8 15.5± 0.7
kf [s−1] 6.7± 0.7 6.3± 0.5 6.8± 0.6 6.3± 0.7 6.6± 0.7 6.5± 0.3
T1,f [ms] 744± 21 719± 15 725± 21 715± 22 718± 23 723.2± 9.3
T2,f [ms] 44± 2 44± 2 41± 3 45± 3 46± 3 44± 1
MTR [%] 43.8± 1.7 42.6± 1.9 43.5± 1.1 42.6± 1.4 43.3± 1.5 43.2± 0.7

Table 4: Parameter fits of F , kf and T2,f and measurements of T1,f and
MTR for white matter, rear corpus callosum.

GM 1 GM 2 GM 3 GM 4 GM 5 Average
F [%] 7.1± 1.1 6.9± 0.5 7.1± 1.0 6.8± 0.9 6.9± 0.7 7.0± 0.4
kf [s−1] 2.9± 0.5 2.9± 0.5 2.9± 0.2 2.8± 0.5 2.9± 0.4 2.9± 0.2
T1,f [ms] 1175± 95 1180± 67 1178± 82 1165± 108 1156± 79 1170± 39
T2,f [ms] 66± 6 68± 5 64± 5 68± 5 67± 4 67± 2
MTR [%] 35.2± 1.8 35.0± 1.8 35.4± 0.8 34.4± 1.9 33.8± 2.9 34.8± 0.9

Table 5: Parameter fits of F , kf and T2,f and measurements of T1,f and
MTR for gray matter, caudate nucleus.

WM 1 WM 2 WM 3 WM 4 WM 5 Average
F [%] 14.5± 3.0 14.2± 3.1 14.7± 3.1 14.4± 3.0 14.2± 3.1 14.4± 1.4
kf [s−1] 5.5± 1.2 5.4± 1.2 5.5± 1.2 5.7± 1.3 5.8± 1.2 5.5± 0.5
T1,f [ms] 775± 108 780± 117 778± 117 776± 119 760± 113 774± 51
T2,f [ms] 48± 9 49± 10 47± 9 49± 10 49± 12 48± 5
MTR [%] 41.5± 3.4 41.3± 3.5 41.4± 3.2 41.3± 3.5 41.5± 3.8 41.4± 1.6

Table 6: Parameter fits of F , kf and T2,f and measurements of T1,f and
MTR for white matter, 3D segmentation.
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GM 1 GM 2 GM 3 GM 4 GM 5 Average
F [%] 7.3± 3.8 6.9± 3.8 7.1± 3.9 6.9± 3.8 6.8± 3.5 7.0± 1.7
kf [s−1] 2.7± 1.5 2.6± 1.5 2.6± 1.6 2.5± 1.5 2.9± 1.5 2.7± 0.7
T1,f [ms] 1100± 263 1113± 282 1103± 286 1106± 290 1079± 292 1100± 126.5
T2,f [ms] 77± 51 84± 60 83± 64 87± 66 83± 58 83± 27
MTR [%] 32.7± 8.1 32.5± 8.2 32.5± 8.3 32.2± 8.4 31.9± 8.6 32.4± 3.7

Table 7: Parameter fits of F , kf and T2,f and measurements of T1,f and
MTR for gray matter, 3D segmentation.

9.4 Issues

The bSSFP sequence is sensitive to off-resonance effects. Using a manual shimming proce-
dure a frequency of ν ≈ 20Hz is achieved. This frequency corresponds to a magnetic field
inhomogeneity of 2πν/(γB0) ≈ 0.31 ppm. The resulting off-resonance dephasing angle
amounts to ∆φ = ±9◦. According to the off-resonance simulation (Fig. 38, signal with
saturation) a variation of ±15◦ in φ leads to a signal difference of approximately ±0.4 %.
Thus, with a good shim nearly negligible off-resonance effects can be achieved.

Even with a good shim, large local field variations may occur in the outer brain regions.
At certain off-resonance frequencies the signal disappears entirely and bands of signal loss,
i.e. banding artifacts, appear (Fig. 39). Such banding artifacts can be strongly reduced

Figure 39: BSSFP image acquired with α = 30◦, TR = 2.99 ms, and
Trf = 270 µs exhibiting banding artifact (arrow).

by multiple phase-cycled acquisitions [20]. Different phase-cycled images (e.g. ∆φ = 0,
∆φ = π/2, ∆φ = π and ∆φ = 3π/2) are combined, yielding more homogeneous spectral
profiles. There are different ways to combine the individual acquisitions and form the
reconstructed image, e.g. maximum-intensity SSFP.
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10 Summary

A new method of quantitative magnetization transfer imaging has been developed. Our
in vivo measurements are based on bSSFP using a 1.5 T clinical MRI scanner. It has been
found that the well-known bSSFP signal equation does not adequately describe the TR
dependency of tissue signal. Magnetization transfer has to be taken into account. Using
a two pool model for tissues a closed form solution describing the signal behavior includ-
ing magnetization transfer was derived. The central assumption consisted in separating
relaxation and exchange processes, allowing to use a matrix formalism. By numerical si-
mulations of the exact equations it was shown that this approximation is justified. Thus,
the solution could be used in a fitting procedure for a 3D data set acquired at 8 different
flip angles and 8 different repetitions times.

Fitting measured data yields quantitative model properties that are comparable with
published values. More precisely, these are the fractional size of the restricted pool F ,
the magnetization exchange rate kf and the transverse relaxation time of the free pool
T2,f . These parameters and the calculated values for the longitudinal relaxation time of
the free pool T1,f and the magnetization transfer ratio MTR remain stable over several
measurements in one healthy volunteer.

For the first time, an MT imaging method produces several quantitative parameter
maps not only for one brain slice, but for a whole 3D data set within a reasonable mea-
surement period. The new method is considerably faster and a higher resolution compared
to literature is used. In the future, the quantitative parameters may provide new informa-
tion on the brain structure and pathological variations in brain matter. The method may
as well provide more detailed information on cartilage [21].

I thank Oliver Bieri for all the discussions, suggestions and ideas that made this work
possible.
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A reason for the discrepancies between our parameters and the literature values may be
that in this study the relaxation rate R1,r was set equal to R1,f . In further studies R1,r

may be included in the fitting routine. Furthermore, our parameter estimates are very
sensitive to the line shape G(∆). In the future, the dependency of the estimates on G(∆)
may be analyzed and different values of G(∆) could be chosen for white and gray matter
regions, respectively.

Besides further investigations on the above described fitting routine, a generalization
of the used principles is of interest. This comprises a possible use of the SSFP sequence.

11.1 SSFP signal with MT

In the general case with dephasing by the angle φ the gradient moments do not add up to
zero after each sequence interval. The magnetization vector ~M =

(
Mxf

My,f Mz,f Mz,r

)
is considered. A general rotation and dephasing matrix analogous to Eq. (6.4) and Eq. (3.7)
has to be used. The matrix describing a spin flip by the angle α reads

Rx(α) =




1 0 0 0
0 cos α sinα 0
0 − sinα cosα 0
0 0 0 e−Wt


 , (11.1)

the dephasing matrix is

Rz(φ) =




cosφ sinφ 0 0
− sinφ cosφ 0 0

0 0 1 0
0 0 0 1


 , (11.2)

and the relaxation matrix is given by

E(TR) =




E2 0 0 0
0 E2 0 0
0 0 E1,f 0
0 0 0 E1,r


 , (11.3)

where E2 = e−TR/T2,f , E1,f = e−R1,f TR and E1,r = e−R1,rTR. The exchange matrix A is
given by Eq. (6.2).

Assuming that relaxation and exchange can be separated, the eigenvalue equation
becomes

~M+(∞) = Rx[I −RzAERx]−1A ~M0 (11.4)

in case the relaxation takes place before the exchange, and

~M+(∞) = Rx[I −RzEARx]−1 ~M0 (11.5)

in case the exchange takes place before the relaxation, where

~M0 =




0
0

M0,f (1− E1,f )
M0,r(1− E1,r)


 (11.6)
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The transversal components of the solution to Eq. (11.4) can be reduced to the same
form as Eqs. (3.16) and (3.17):

M+
x (∞) = M0 sinα

G(1− E2 cosφ)
C cosφ + D

(11.7)

and
M+

y (∞) = M0 sinα
GE2 sinφ

C cosφ + D
, (11.8)

where

G = (1− E1,f )BM0,f + (1− E1,r)(1− fk)M0,r, (11.9a)
C = −E2A + E2E1,fB − cosαE2(A− E1,fB), (11.9b)

D = A−E1,fE2
2B + cos α(E2

2A− E1,fB). (11.9c)

Furthermore,

A = 1 + F − FfwE1,r + fkfwE1,r, (11.10a)
B = 1 + Ffk − fkfwE1,r + FfkfwE1,r, (11.10b)

fk = e−(kf+kr)TR =: e−kTR, (11.10c)

fw = e−WTrf , (11.10d)

where M0,f = 1, M0,r = FM0,f , E2 = e−t/T2,f , E1,f = e−R1,f TR and E1,r = e−R1,rTR.
Integration thus yields the SSFP signal with MT

〈MT 〉 = M0
G sinα

C

(
C + DE2√
D2 − C2

−E2

)
, (11.11)

analogous to Eq. (3.19).

11.2 SSFP signal behavior

The dependency of the SSFP signal on the flip angle and the repetition time are shown in
Fig. 40. The simulated off-resonance signals can now be compared to calculations (Fig 41).
The signal without saturation corresponds to the well-known SSFP signal (Eq. 3.15) and
the signal with saturation shows good agreement with the calculated SSFP signal including
MT (Eqs. 11.7 and 11.8).

The bSSFP signal is 40 % to 50 % stronger than the SSFP signal and the signal
maximum occurs at a 5◦ to 10◦ higher flip angle as can be seen in Fig. 42 for white
matter, TR = 3.09 ms and Trf = 400 µs.
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Figure 40: Simulated SSFP signal as a function of α (left) and TR (right).
Blue curves: without saturation, green curves: with saturation.

Figure 41: Off-resonance simulation and calculation for white matter,
TR = 3.5 ms, Trf = 340 µs and α = 40 ◦. Blue curve: SSFP signal with-
out saturation, green curve: SSFP signal with saturation (dotted lines:
simulated, solid lines: calculated) black dotted curve: difference of simu-
lated values and calculated values with saturation.
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Figure 42: Green curves: signal without MT. Black curves: signal with
MT. Both curves are calculated for bSSFP (solid lines) and SSFP (dashed
lines). TR = 3 ms, Trf = 640 µs, R1,f = 1.71 s−1, T2,f = 81 ms,
R1,r = 1 s−1, F = 0.157 and kf = 4.45 s−1.
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